중1수학2015.03.19 19:44

최소공배수 구하는법을 알아보자. 일단 서로 다른 두 자연수의 공통된 배수 중, 가장 작은 수가 최소공배수다. 그리고 최소공배수 구하는 방법은 크게 2가지로, 하나는 동시에 나눠주는 방법이고, 또 다른 하나는 소인수분해를 활용한 방법인데, 최대공약수 구하는 법이랑 거의 비슷하다. 그럼 최소공배수 구하는 법을 알아보자.

 

 

 

 

먼저 최소공배수 역시 기본적으로 동시에 나눠주는 방법을 사용하는데, 최대공약수와는 달리 나머지의 서로소까지 곱해줘야 한다. 예를 들어 3042의 최소공배수를 구한다고 하자. 일단 3042는 서로 2 3으로 나뉘기에, 먼저 23으로 나눠준다. 그럼 나머지로 서로소 57이 나오는데, 57까지 곱해줘야 최소공배수가 된다.(보통 약수는 공통된 수로만 이루어져 있지만, 배수는 공통되지 않은 수도 포함되기에, 이렇게 공통되지 않은 서로소까지 곱해준다) 그래서 최소공배수는 2×3×5×7=210이 되는 것을 알 수 있다.

 

 

그런데 자연수가 3개면 상황이 조금 달라진다. 왜냐하면 최소공배수를 구하기 위해서는 나머지 3개 모두 서로소가 되어야 한다. 예를 들어 202436의 최소공배수를 구하기 위해서 동시에 나눈다고 하자. 먼저 2로 두 번 나눠주면, 나머지는 569가 나온다. 그럼 이제 서로 공약수가 없어서 더 이상 나눠줄 수 없지만, 아직 나머지 3개 모두 서로소가 되지는 않았다.(69는 서로소가 아니다. 왜냐하면 3으로 나눠줄 수 있기 때문이다)

 

 

그래서 나머지 3개 모두 서로소가 될 때까지 계속 나눠줘야 하는데, 나눌 수 없는 수는 그냥 밑으로 내리면 된다. 그래서 3으로 한 번 더 나누면, 나머지가 523이 되면서, 나머지 3개 모두 서로소가 된다.

 

 

이렇게 최소공배수를 구할 때는 나머지 3개 모두 서로소가 될 때까지 나눠줘야 하는데, 2개만이라도 나눌 수 있다면, 계속 나눠줘야 한다. 추가로 자연수가 3개 이상이면, 동시에 나눠주는 방법이 조금 번거롭기에, 소인수분해를 활용한 방법으로 구하는 것이 더 좋다. 어쨌든 최소공배수는 2×2×3×5×2×3=360이 되는 것을 알 수 있다.

 

 

그럼 이번에는 소인수분해를 활용한 방법에 대해서 알아보자. 먼저 예를 들어 168180의 최소공배수를 구한다고 하면, 먼저 168180을 소인수분해 해야 한다. 그럼 168=23×3×7이 나오고 180=22×32×5가 나오는데, 여기서 거듭제곱이 큰 걸 선택한다.(약수와 달리, 배수는 모두 포함되어야 하기에) 그리고 위의 동시에 나눠주는 방법에서, 서로 공통이 아닌 서로소까지 곱해준 것과 마찬가지로, 소인수분해에서도 서로 공통인 아닌 소수까지 곱해줘야 한다.(배수는 공통되지 않은 수도 포함되기에) 그래서 최소공배수는 23×32×5×7=2520이 되는 것을 알 수 있다. 그럼 다음 글에서는 문제풀이를 해보자.

 

저작자 표시 비영리 변경 금지
신고

'중1수학' 카테고리의 다른 글

최대공약수와 최소공배수의 활용 문제풀이  (2) 2015.03.22
최소공배수 문제풀이  (0) 2015.03.20
최소공배수 구하는법  (6) 2015.03.19
최대공약수 문제풀이  (0) 2015.03.18
최대공약수 구하는법  (0) 2015.03.17
최대공약수와 최소공배수란?  (10) 2015.03.16
Posted by 나부랭이

댓글을 달아 주세요

  1. 비밀댓글입니다

    2016.01.05 13:37 [ ADDR : EDIT/ DEL : REPLY ]
  2. ㅁㄴㅇ

    감사합니다

    2016.03.19 14:43 신고 [ ADDR : EDIT/ DEL : REPLY ]
  3. 제글을 트랙백을 걸었습니다 ^^

    2016.07.17 22:09 신고 [ ADDR : EDIT/ DEL : REPLY ]